

Identity Management in the Mobile Environment

Framework for Mobile Identity Approval Procedures

The Big Picture

Security of Using a Local Credential with the Mobile Device

Using a Local Credential with a MD

Analysis of Credential-to-MD Transfer

- 1. Identify potential implementation permutations
- 2. Break down each permutation into elements (SE, PIV, Token, etc.)
- 3. Qualify each permutation and its elements to:
 - Is it PHYSICALLY DURABLE?
 - Will it be COMPATIBLE?
 - Is it SECURE?

PHYSICAL DURABILITY

• Ex: PIV flex test, torsion test, abrasion test, etc. (Usually will be outside this project scope. A report certifying this characteristic will be required)

INTERFACE COMPATIBILITY

- Internal consistency & compatibility of the hardware & software used in each permutation
- Handling of multiple credentials or java applets on a SE

SECURE

- FIPS/Common criteria, cryptographic, PKI, RSA/DSA encryption, etc.
- Interface security of SE to other components

Credentialed Token Implementation Methods

External Credential Implementation

Removable Credential Implementation

- Credential using a UICC/µSD
- Must assess: 1) Durability; 2) Compatibility; and 3) Security

8

Internal Credential Implementation

- Credential using an internal token
 - May be provided/managed by MNO
 - UICC
 - · Permanently embedded module
- Must assess: 1) Durability; 2) Compatibility; and 3) Security

		Standards	Interoperability	Security	Questions	Additional
Name Position Expiration Permissions	SE	 FIPS 201 SP800-73 SP800-76 SP800-78 SP800-79 	If follows the standards, will it be compatible?	• LOA		 Physical prop's (10373, 7816) Integrated Circuit prop's
Contact	Interface	w.r.t. Mobile Security • ?				
Name Position Expiration Permissions	SE	 FIPS 201 SP800-73 SP800-76 SP800-78 SP800-79 	If follows the standards, will it be compatible?	• LOA		
Contactless	NFC NFC	14443FIPS-201FIPS-140				10
			QAID#: 1201263.000-4861			10

Removable

PERMUTATIONS		Standards	Interoperability	Security	Questions	Additional
UICC 2000	SE	• FIPS 201	If follows the standards, will it be compatible?	LOACommon Criteria		Physical prop's (10373, 7816)Integrated Circuit prop's
UICC	Interface C1 C2 C3 C4 C5 C6 C7 C8	W.R.T. Mobile Security • ?				
268 Misro	SE	• FIPS 201	If follows the standards, will it be compatible?	• LOA		
μSD	Interface C1 C2 C3 C4 C6 C7 C8	• FIPS-201				
			OAID#: 1201262 000 4861			11

QAID#: 1201263.000-4861

Internal

	• FIPS 201 • FIPS 186	If follows the standards,	• LOA	
Application API Baseband modem	 Cert. Hierarchy Verification 	will it be compatible?		
SE SE	W.R.T. Mobile Security • ?			
MNO UICC				

QAID#: 1201263.000-4861

Credential + Mobile Security

Even the credential! Leave no stone unturned

	Standar	ds Interopera	bility Security	Questions	Additional
Credentials	 FIPS 201 CRL Certificate h verification X.509 				 Physical prop's (10373, 7816) Integrated Circuit prop's

QAID#: 1201263.000-4861 13

Credential Transfer Summary

- Physical durability
- Compatibility
- Security

Credentialed Token

Location	Examples
External	CAC,PIV
Removable	UICC, μSD
Internal	Embedded SE, Virtual SE

Interface

Туре	Examples
Contact	CAC sled
Contactless	NFC, Bluetooth, LTE
Interface Policy	Insert-remove, tap, maintained proximity

Security of the Mobile Device

Security of Mobile Device

QAID#: 1201263.000-4861 16

Summary of Mobile Device Secure Application Considerations

- Each *element* within the device and the *interface*between them must be tested as durable,
 compatible, and secure
- Some existing standards
 - Global Platform
 - Trusted User Interface (TUI)
 - Trusted Execution Environment (TEE)
 - SE API specification
 - SE Access control
 - SE Remote application management
 - Common Criteria
 - > FIPS 140/201
 - Application security testing (App-vetting)
 - ISO/IEC 7064, 9796, 9797, 14888, 27001

Trusted Execution Environment

Secure Element/
Cryptography

Security of Communications: Encryption and Authentication

Security of Communications

Messaging Options for Secure Communications

- Level of security desired vs. performance
 - Encryption strategy (symmetric vs. PKI)
 - Communication security (insecure vs. secure (TLS))
 - Digest usage
- Higher security ≈ lower performance
- Select from security options below to obtain required/desired level of security

Secure Options Menu

- Encrypted message
 - Symmetric (shared (public) key)
 - Asymmetric (PKI)
- Over-the-Air (OTA) communications
 - Insecure
 - Secure Trusted Layer Security (TLS)
- · Digest architecture
 - Encryption optional

Considerations

- Policy/Externally driven requirements
- Security level
- Reliability
- Availability
- Bandwidth required
- Power required
- Integrity/Confidentiality

Architecture for Weak Security

Architecture for Extreme security; includes all elements

21

Additional Considerations

 The following are present in all architectures and their security/compatibility must be considered:

Certificate Authority

- •X.509 compliant
- Cert revocation list
- Cert hierarchy verification
- •PKCS# CSR, SCEP
- Trusted list of CA's

Over-the-Air Communication

- Insecure
- TLS
- PKCS#

Relying Party

- One-way vs. Two-way trust
- Federation membership

Summary of Communications Security

- Security required/desired vs. performance drives the architecture
 - Encryption strategy
 - Communication security
 - Digest usage
- Performance consideration examples:
 - Bandwidth required
 - Power required
 - Speed of transaction
- Security level
- Integrity
- Confidentiality
- Reliability
- Availability

- Testing required to:
 - Identify security gaps
 - Ensure architectures are followed, even as apps are updated
 - Interfacing with the Certificate Authority and Relying Party is flawless

Derived Credentials

Deriving and Derived Credentials

- The derived credential option requires consideration of both the issuance of the credential to the MD, as well as its maintenance and termination.
- Deriving procedure:
 - Driven by NIST SP800-157 and enterprise policy
 - Options exist in SP800-157
- Derived credentials:
 - Also covered in SP800-157
 - Maintenance and termination
 - Relation to original credential

Deriv*ing* (Issuance)

- SP800-157 dictates issuance and relationship between PIV credential and MD derived credential
- LOA-3 remote issuance requires TLS communications
- LOA-4 cannot be issued remotely; biometric authentication required.
- MD integrity verification (jailbroken, rooted, etc.)
 - Commercial products available such as Fixmo Sentinel IS
- Testing required to verify conformance to standards/special publications

26

Special Issuance Situations

EX: What if transferring credential from CAC to MD is unavailable/restricted?

27

CA

Use and Maintenance of Derived Credential

 Use-case drives level of encryption/security used

- Policy for each use case
- Testing required to verify established security and that security is maintained during updates

Derived Credentials Summary

- SP800-157 specifies secure policy, software, and hardware requirements for derived credentials
- Secure issuance must also be strongly considered
- Testing is required for standards/policy conformance
- Gaps in the standard can exist, which must be explored
- Additional standards and testing may be required

Commercial Efforts Toward Mobile Authentication

Host Card Emulation (HCE)

- Recently adopted by Visa/ Mastercard for NFC-payments
- The secure element is moved out of the phone and onto the cloud
- Requires over-the-air communication

Relevance for FICAM

- User authenticates to server, instead of locally to mobile device
- Requires transmitting PIN/ Biometric to the SE for authentication
- Questions exist for how to protect this transmission – with no local SE, Private Key Encryption is not possible
- LOA considerations will guide the feasibility and inherent testing requirements

31

FIDO Alliance

- Eliminate passwords, while still having strong two-factor authentication
 - What you know (password)
 - What you have (mobile device)
 - Who you are (biometric)
- Local authentication (biometric) unlocks the private key 'store'
 - Similar to typing in PIN to unlock CAC/PIV
 - Key 'store' supports separate keys for each RP
- Secure element still part of the architecture
- Commercial effort, but could fit with FICAM

Mobile Security Verification Testing

- Have laid out both the landscape and what needs to be considered for testing in order to assure security in a mobile environment
- Can now identify relevant existing standards and test protocols for each of the implementation permutations discussed
- Can also identify areas where standards will have to be developed in order to verify security

Summary of Approval Procedure Scope

T = Testing/Verification Required

Sample MD Approval Procedure

The below list of tests are a partial listing of the standards that this one configuration must show conformance to in order to be approved for use in the federal mobile identity ecosystem

Local credentialed token	Interface	Secure mobile device	Secure communications
Standards examples	Standards examples	Standards examples	Standards examples
GSA PIV Approval	• ISO/IEC 10373	Global Platform	• SP800-63
Procedure	• ISO/IEC 7816	 Trusted user interface 	• SP800-73
 ISO/IEC 10373 	 ISO/IEC 7810 	 Trusted execution 	 PKCS#/SCEP
 ISO/IEC 7816 		Common Criteria	• X.509
 ISO/IEC 7810 	Test examples	• ISO/IEC 11889	• FIPS 186
• FIPS 201	UL certificate	Test examples	Test examples
• SP800-73	 Pin position/shape 	Bad PIN lockout	Bad certificate denial
Test examples	 Card reader voltage/ 	 FCC/UL certificate 	 Denied access to
ISO 7816 report	current limit	• TUI/TEE cert. hierarchy verify	forbidden RP
FIPS 201 report	 Reader → Phone 	 Cryptographic zeroing/ 	 Denied access to non-
 Security lockout protocol 	secure comms	tamper-resistance	approved RP

35

Conclusion

- There are a significant number of permutations, standards, and test protocols that must be incorporated in order to build a fully-encompassing secure mobile device approval procedure
- The next step is to prioritize development of a test approval procedure for the most popular options, based on the case studies

